
MATH2050C Assignment 6

Deadline: Feb 18, 2025.

Hand in: 3.4 no. 4b, 7ad; 3.5 no. 5. Suppl. Problem no 5.

Section 3.4 no. 4, 6, 7ad, 8, 9, 11.

Supplementary Problems

1. Let {xn} be a positive sequence such that a = limn→∞ xn+1/xn exists. Show that

limn→∞ x
1/n
n exists and is equal to a. Hint: Write

xn =
xn
xn−1

xn−1
xn−2

· · · x2
x1

x1 .

Also use Theorem 5.3.

2. Show that limn→∞
n

(n!)1/n
= e.

3. The concept of a sequence extends naturally to points in RN . Taking N = 2 as a typical
case, a sequence of ordered pairs, {an},an = (xn, yn), is said to be convergent to a if, for
each ε > 0, there is some n0 such that

|an − a| < ε , ∀n ≥ n0 .

Here |a| =
√

x2 + y2 for a = (x, y). Show that limn→∞ an = a if and only if limn→∞ xn = x
and limn→∞ yn = y.

4. Bolzano-Weierstrass Theorem in RN reads as, every bounded sequence in RN has a con-
vergent subsequence. Prove it. A sequence is bounded if |an| ≤ M, ∀n, for some number
M .

5. Consider the sequence {xn}, xn =
∑n

k=1 sn1/n2 where sn is either 1 or −1. Show that
{xn} is convergent.

6. Consider xn = (xn−1 + xn−2)/2, n ≥ 3 and x1 = 1, x2 = 2. Show that {xn} converges
to 5/3. Hint: To find the limit establish x2n+1 = 1 + 1

2 + 1
23

+ · · · + 1
22n−1 . and x2n =

x2n−1 + 1
22n−2 .
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Bolzano-Weierstrass Theorem

Recall the Nested Interval Property in Assignment 2.

Theorem 6.1 (Nested Interval Property). Let In = [an, bn], n ≤ 1, be a sequence of closed
intervals satisfying In+1 ⊂ In. Then

⋂
n In = [a, b] where a = supn an and b = infn bn. When

bn − an → 0 as n→∞, a = b and
⋂

n In = {a}.
Theorem 6.2 (Bolzano-Weierstrass Theorem). Every bounded sequence has at least one
convergent subsequence.

Our proof is slightly different from the second proof in our text book.

Proof. Let {xn} be a bounded sequence. Fix a closed, bounded interval I0 = [−M,M ] contain-
ing the sequence. We divide I0 equally into two closed subintervals. One of these subintervals
must contain infinitely many xn’s. Pick and call it I1. Next, we divide I1 equally into two closed
subintervals and apply the same rule of selection to get I2. Repeating this process, we end up
with closed intervals In, n ≥ 1, with the properties: For n ≥ 1, (a) In+1 ⊂ In, (b) the length of
In+1 is half that of In and so the length of In is equal to M/2n−1 and (c) there are infinitely
many xn’s sitting inside each In. By the Nested Interval Property ∩∞n=1In = {z}. Now, we pick
xn1 from I1 and then xn2 from I2 so that n2 > n1, which is possible since there are infinitely
many xn’s in each In. Keep doing so we finally obtain a subsequence {xnk

}, xnk
∈ Ik. From

ak ≤ xnk
≤ bk and bk − ak → 0 we conclude xnk

→ z as n→∞.

A point z is called a limit point of the sequence {xn} if it is the limit of some subsequence
of {xn}. A bounded sequence has at least one limit point according to Bolzano-Weierstrass
Theorem. This following theorem is the same as Theorem 3.4.9 in text book.

Theorem 6.3. A bounded sequence is convergent if all its convergent subsequences have the
same limit.

Proof. Assume that there is only one limit point x. Suppose on the contrary that the sequence
does not converge to x. We can find some ε0 > 0 and nk → ∞ such that |xnk

− x| ≥ ε0.
Since {xnk

} is bounded, it contains a subsequence {xnkj
} which converges to some y satisfying

|y − x| = limj→∞ |xnkj
− x| ≥ ε0. Since every subsequence of a subsequence is a subsequence of

the original sequence, {xnkj
} is a subsequence of {xn}. Thus y is a limit point different from x,

contradicting our assumption that all convergent subsequences have the same limit.

On the other hand, if xn → x, for ε > 0, there is some n0 such that |xn − x| < ε for all
n ≥ n0. Let {yk}, yk = xnk

, be a subsequence of {xn}. Fix some nk0 ≥ n0. Then we have
|yk − x| = |xnk

− x| < ε for all nk ≥ nk0 , that is yk → x too.

Let {xn} be a bounded sequence. For each n ≥ 1, let

yn = sup
k≥n

xk = sup{xn, xn+1, xn+2, · · · } .

It is clear that {yn} is decreasing and bounded from below. By Monotone Convergence Theorem,
its limit exists. We call it the limit superior of the sequence of {xn}. In notation,

limn→∞xn = lim
n→∞

yn = inf
n≥1
{yn} = inf

n≥1
sup
k≥n

xk .
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Similarly, let
zn = inf

k≥n
xk = inf{xn, xn+1, xn+2, · · · } .

It is clear that {zn} is increasing and bounded from above. By Monotone Convergence Theorem,
its limit exists. We call it the limit inferior of the sequence of {xn}. In notation,

limn→∞xn = lim
n→∞

zn = sup
n≥1
{zn} = sup

n≥1
inf
k≥n

xk .

Theorem 6.4. For a bounded sequence, its supremum is its largest limit point and its infimum
the smallest limit point.

The following proof may be skipped in a first reading.

Proof *. Let b be the supremum of all limit points of {xn} and a = lim supn xn. We want to
show a = b. First, we claim that a is itself a limit point. Hence a ≤ b. To do this we need to
produce a subsequence convergence to a. For ε = 1, there is some n0 such that |yn − a| < 1 for
all n ≥ n0. In particular, |yn0−a| < 1. Since yn = sup{xn, xn+1, xn+2, · · · , }, for the same ε = 1,
there is some m0 ≥ n0 such that |xm0 − yn0 | < 1. Next, by the same reasoning, for ε = 1/2,
there is some n1 > n0 such that |yn1 − a| < 1/2 and m1 ≥ n1 such that |yn1 − xm1 | < 1/2.
Continuing this, we obtain ynk

and xmk
where nk and mk are strictly increasing which satisfy

|ynk
− a|, |ynk

− xmk
| < 1/k. Therefore,

|xmk
− a| ≤ |xmk

− ynk
|+ |ynk

− a| < 1

k
+

1

k
=

2

k
.

Letting k →∞, by Squeeze Theorem we conclude limk→∞ xmk
= a, done.

On the other hand, to show b ≤ a it suffices to show c ≤ a for any limit point c. Let
c = limnk→∞ xnk

be such a limit point. For ε > 0, there is some nk0 such that c − ε < xnk

for all nk ≥ nk0 . As xk ≤ zk for all k, we have c − ε ≤ xnk
≤ znk

. Letting k → ∞,
a = limnk→∞ znk

≥ c− ε. Since ε > 0 is arbitrary, a ≥ c. Taking sup over c, we get a ≥ b.

Now it is easy to show

Theorem 6.5. Let {xn} be a bounded sequence. Then

1. limn→∞xn ≤ limn→∞xn,

2. {xn} is convergent iff limn→∞xn = limn→∞xn. When this holds, limn→∞ xn = limn→∞xn.

The limit superior and limit inferior will become important in the future, but not it suffices to
know its definitions.

Cauchy Convergence Criterion

The Cauchy convergence criterion is the most general criterion for convergence. It works for
non-monotone sequences.

A sequence {xn} is a Cauchy sequence if for every ε > 0, there is some n0 such that |xm−xn| < ε
for all m,n ≥ n0.
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Proposition 6.6 Every convergent sequence is a Cauchy sequence.

Proof Let xn → x. For ε > 0, there is some n0 such that |xn − x| < ε/2,∀n ≥ n0. Therefore,
for m,n ≥ n0,

|xm − xn| = |xm − x + x− xn| ≤ |xm − x|+ |x− xn| <
ε

2
+

ε

2
= ε,

so {xn} is a Cauchy sequence.

Theorem 6.7 (Cauchy Convergence Theorem) Every Cauchy sequence converges.

Proof Let {xn} be a Cauchy sequence. First we show that it is bounded. For ε = 1, there
is some n0 such that |xm − xn| < 1 for m,n ≥ n0. In particular, |xn − xn0 | < 1 so |xn| ≤
|xn − xn0 | + |xn0 | < 1 + |xn0 |, n ≥ n0. Therefore, |xn| ≤ max{|x1|, · · · , |xn0−1|, 1 + |xn0 |} for
all n. Now we can apply Bolzano-Weierstrass Theorem to extract a convergent subsequence
{xnk

}, xnj → x, from {xn}. For ε > 0, |xnk
− x| < ε/2, ∀nk ≥ nk0 for some nk0 . On the other

hand, {xn} is Cauchy, for ε > 0, there is some n0 such that |xn − xm| < ε/2 for m,n ≥ n0. Fix
some nk ≥ n0, nk0 , we have

|xn − x| ≤ |xn − xnk
|+ |xnk

− x| < ε

2
+

ε

2
= ε,

so xn → x.


